
Theoretical Computer Science 87 (1991) 97-114 97
Elsevier

The equivalence in the DCP
model*

Reine Fournier
Ddpartement d'lnformatique et de Recherche Opdrationnelle, Universitd de Montrdal, C.P. 6128,
Suet. A: Montreal, Que., Canada H3C M7, and D~partement de Mathdmatiques et
d'Informatique, Universitd de Sherbrooke, Sherbrooke, Que., Canada J IK 2R1

Gregor von Bochmann
Ddpartement d'1nformatique et de Recherche Opdrationnelle, Universitd de Montreal, C.P. 6128,
Succ. A, Montreal, P.Q., Canada H3C 3J7

Communicated by M. Nivat
Received December 1988
Revised April 1989

Abstract

Fournier, R. and G. von Bochmann, The equivalence in the DCP model, Theoretical Computer
Science 87 (1991) 97-114.

The ever increasing complexity of systems stimulates research in the area of processes equivalences.
In this paper, processes are considered as black boxes, characterized by their external interactions
only, and the equivalences are based on this assumption. The equivalence relation induced from
the partial order defined in Johnston's model of Discrete Communicating Processes is studied
with the intention of finding its place within the chain of existing equivalences (namely, trace
equivalence, testing equivalence, bisimulation and observational equivalence). Unfortunately, this
model does not compare easily with the others. However a modification to the original model,
consisting in keeping more information within a process identifier, namely all of its immediately
performable events, and explicitly writing deadlocks, gives a new equivalence relation =~-a which
is finer than the original one and which has the property of being equivalent to bisimulation.

I. Introduction

S i n c e t h e b e g i n n i n g o f t h e e igh t i e s , s e v e r a l a l g e b r a i c t h e o r i e s o f p r o c e s s e s h a v e

a p p e a r e d s u c h as C C S [18] , C S P [13] , S C C S [19] , A C P [1] , C I R C A L [17] , D C P

[6, 23] , L O T O S [14] , d C C S [15] . W i t h i n e a c h t h e o r y a n e q u i v a l e n c e r e l a t i o n is

* This work was partially supported by the Natural Sciences and Engineering Research Council of
Canada.

0304-3975/91/$03.50 © 1991--Elsevier Science Publishers B.V.

98 R. Fournier, G. yon Bochmann

defined to help determine whether two processes are equivalent or not. The theory
of equivalences is very useful since it allows us to replace a complex system (or
parts of it) by a simpler equivalent one facilitating the analysis of the entire system
and the verification of its properties.

This paper deals with the equivalence relation induced from the partial order

defined in the DCP model. Johnston's model DCP (Discrete Communicating Proces-
ses) [6, 23] permits the formal specification and meaningful analysis of the behaviour
of distributed computing systems. Furthermore, it incorporates computational tools
to aid analysis and verification [22] which might make it even more appealing. In

fact, we shall try to find its place within some of the existing equivalences. Since it

proves impossible to realize our goal with the original definition, we shall show
how a modification to the original model helps us to fit this new equivalence relation

in the chain of existing equivalences. We shall also prove that this new equivalence
is finer than the original one.

All equivalences considered in this paper are based on the idea that two systems
are equivalent if they cannot be distinguished by (external) observation. However,
different forms of observation are considered. We use the term process to represent
an abstract entity able to perform internal (invisible) actions as well as to communi-

cate with other processes in its environment via communcation events (interactions).

This paper is organized as follows: Section 2 gives a brief overview of the model

DCP [6, 23]; Section 3 introduces some equivalences on labelled transitions systems
and reminds the reader of the relations between them [7]; Section 4 shows how the
equivalence relation induced from the partial order in DCP relates with the above
mentioned equivalences; Section 5 shows how the introduction of explicit deadlock

in DCP pushes the DCP equivalence into the chain of equivalences described in
Section 3; and Section 6 gives a short conclusion.

2. Discrete communication processes

In order to compare the equivalence defined in Johnston's model of Discrete
Communication Processes (DCP) [6, 23] with other equivalences (such as observa-
tional equivalence [18], bisimulation [21], trace equivalence [12] and testing

equivalence [3, 7, 8]), we shall adapt Johnston's equivalence to Labelled Transition
Systems (LTS).

Notice that since their introduction by Keller [16], transition systems have been
used as an underlying model for many proposed models of parallelism. In fact,

transition systems are a relational model based on two primitive notions: state and
transition. Since it is possible, for the DCP model, to define the notion of global

state and a notion of indivisible action causing a state transition, we can define for
each DCP process a corresponding transition system. This correspondence deter-

mines an interleaving semantics for the model.

Equivalence in the DCP model 99

In this paper , we shall consider (following De Nicola [7]) a part icular class o f

nondeterminis t ic transit ion systems which can be used to model systems controllable

through interactions with a surrounding environment , but also capable o f performing

internal actions r which cannot be influenced or even seen by any external agent.

Def in i t ion 2.1. A labelled transition system (L T S) is a quadruple (S, A, T, So) where

(i) S is a countable n o n e m p t y set o f states;

(ii) A is a countable set o f elementary actions;

(iii) T is a funct ion f rom A w {r} into ~ (S x S) where T(/x) is called a transition

relation and denoted by -% for each /x ~ A w {r};

(iv) So ~ S is the initial state of the labelled transit ion system.

In this definition, each binary relation -% shows the effect o f the elementary action

/z on the system. In fact, if q, q' c S and (q, q') ~ -% (denoted q -% q') this means

that if the system is in state q, the execution o f / x will bring the system into state

q'; q ~ q' indicates that the system while in state q can perform a silent move to

state q'.

Such a transit ion system can obviously be unrol led into a tree whose nodes are

the states, the root being the initial state, and whose arcs are labelled with elements

of A w { r } .

Def in i t ion 2.2. Two labelled transition systems with the same set o f elementary

actions, LTS1 = ($1, A, T1, So,) and LTS2 = ($2, A, T2, so2) are said to be isomorphic

if there exists a one- to-one cor respondence f : S, ~ $2 such that

(i) s,, -% Sl2 if and only i f f (s l ,) -%f(s ,2) for all a ~ A and all s,1, s,26 S,;

(ii) f(s01) = So2.

In this paper , we shall use the fol lowing notat ions:
• A denotes the set o f visible actions: a, b, c , . . . called elementary actions in the

above definition;

• A* denotes the set o f strings o f elements o f A whose elements are s, s ' , . . , and
e, the empty chain;

• r denotes the invisible (internal) action (defined earlier);

• A , = A u {r} whose elements a re /z , , / z2 , • • • ;

• p -,-2..-~% q is the abbreviat ion o f 3 p o , . . . , p , such that
'~1 ~2 'tin

Po = P ~ P,--+ • .. ~ P , - I ---~ P, = q;

• p ~,"2...",,, means that there exists a q such that p ~,"2 ",,~ q;

• p ~ q means that there exists an n~>0 such that p_Z; q;

• p =~ q means that there exist p, and P2 such that p ~ , p , -% P2 ~ q;
a l a 2 . . . a • p ";, q means that there exist Po, • • •, P, such that

a l a 2 a . _ 1 a n

P = Po ~ P, 3 . . .)" Pn-l:::f Pn = q ;

• p g:> means that there exists q such that p ~ q.

100 R. Fournier, G. yon Bochmann

Now let us go back to the DCP model [6, 23]. As in Milner's CCS [18], the DCP

model uses the external behaviour to define processes which are described by the

interactions that they exchange with their environment, as follows.

Definition 2.3 (Johnston [6]; Rea and Johnston [23]). A process p can be defined

as a set {Cel, q 0 , . . . , Ce,, q.)} of pairs where each el is a communicat ion event and

each q, is a subsequent process or behaviour.

This should be interpreted as follows: the process p offers, for all i, to exchange

communicat ion el with its environment; if it is accepted then process p will proceed

as process ql. This definition is inherently recursive, a process being defined in terms

of processes. The behaviour of a discrete communicat ion system is characterized

by the pattern (usually infinite) of its exchanges with the environment; it is this

behaviour which is called a discrete communicat ion process. These processes can

be represented by infinite trees whose branches are labelled with communicat ion
events and whose nodes represent the initial process (root) and its successors.

At any given time a process may emit a message or absorb one. The emission of

message a will be denoted by a !, while the absorption of message a will be denoted

by a?.

Remark 2.4. A DCP process p can be viewed as the following labelled transition

system CS, A, T, p), where
(i) S is the set containing p and all its successors;

(ii) A is the set of all communicat ion events used in the definition of p or one

of its successors;

(iii) T is a set of transition relations whose elements are binary relations on S

denoted by -~ for each ~ c A u { r } , defined as follows: if p ' is p or one of its

successors and Cp~, q) ~ p ' then we have that (p', q) ~ --% which we write p ' --% q.

Example 2.5. I f P3={Cb, stop)} and P4={(c, stop)}. Then we define P~=
{Ca, P3), Ca,/)4)} which is represented by the tree in Fig. 1.

Furthermore if P + Q denotes the process that behaves either like P or Q depend-

ing on the first offer made by the environment, then/)2 = {(a,/)3 + P4)} is represented

by the tree in Fig. 2.

P1 :

b c

Fig. 1.

Fig. 2.

Equivalence in the D C P model 101

Intuitively we would like to say that two processes P~ and P2 are "related" [6]
if, for instance, whatever communication event P2 can offer, P~ can offer it too.
Then we shall say that P~ simulates P2 [6, 23]. Formally, we have the following

definition.

Definition 2.6 (Johnston [6]; Rea, Johnston [23]). Let P~ and P2 be two processes.

We say that P~ simulates P2 (denoted P~ <~a P2) if and only if for each (e2, q2) C P2
there exists (e~, q~) c P~ such that e~ = e2 and q~ <~a q2. Furthermore, we say that P~
and P2 are J-equivalent, as Johnston-equivalent, (denoted P~ =a P2) if and only if

Pl <~a P2 and P2 ~.1 P~-

Remark 2.7. The processes P~ and Pz defined in Example 2.5 are not J-equivalent.

Remark 2.8. The partial order ~<a corresponds to the Smyth ordering [25]. Obviously,
=a is an equivalence relation. In fact, two processes are J-equivalent if they have
the same minimal behaviour. For example,

P, = {(s, 0), (s, {(y, 0)}), (d, [(e, 0)})}

and

P2 = {(s, {(y, 0)}), (d, {(e, 0)})}

are J-equivalent.

We can reformulate the above definition in terms of transition systems. We would
get the following definition.

Definition 2.9. Let LTSt = (Sl, A, T~, $01) and LTS2 = (S2, A, T2, So2) be two labelled
transition systems with the same set of actions. For i = 1, 2, let LTSi(si) denote the
subsystem of LTSi which has si as its initial state, that is, the subtree of LTSi which
has si as its root. LTSt simulates LTS2 (denoted LTSI ~a LTS2) if and only if for
all t c A and for all s2 c $2 such that So~ ~ s2, there exists an sl ~ $1 such that So~ ~ st
and LTS~(s0 <~a LTS2(s2).

3. Overview of other equivalences

In this section, we shall first briefly recall the definitions of some equivalences
and show how they are related. The interested reader is referred to De Nicola [7]

for a more extensive analysis. In his paper [7], De Nicola considers only processes

102 R. Fournier, G. yon Bochmann

that can be represented by finitely branching trees. We shall also make this assump-
tion since those DCP processes of practical interest can always be represented by
such trees.

3.1. Trace equivalence

A natural approach to system equivalence is considering two systems as equivalent
that can perform exactly the same sequences of visible actions (not considering any
internal actions) [12].

Definition 3.1.1 (De Nicola [7], Hoare [11]). Let TS~=(P,A, T~, Po) and TS2 =
(Q, A, T2, qo) be two transition systems. Then we say that TS~ is trace equivalent to

TS2 (denoted TS~ ~t TS2) if and only if

(Vs ~ A*) (Po ~ if and only if qo ~) .

Let us define Traces(q) = {s c A* [q ~ } to be set of all possible traces of process q.

Remark 3.1.2. TS~ - t TS2 if and only if Traces(po) = Traces(qo); furthermore, - t is
obviously an equivalence relation.

This equivalence is sometimes called strings equivalence [7].
It can be easily seen that the two processes of Example 2.5 are trace equivalent

since Traces(Pi)= {a, ab, ac} = Traces(P2). However, if P3 is the process shown in
Fig, 3, then obviously P2 and P3 are not trace equivalent.

This equivalence is used in automata and language theories; it is also the basis
of many semantics proposed for Hoare's CSP [5, 11, 12, 13].

P3 :

Fig. 3.

3.2. Observational equivalence and bisimulation

Milner defines three equivalences in his CCS model. Two of them are of no
interest since they are much too strong to be of any use. Therefore, we shall only
consider the observational equivalence which permits the absorption of internal
actions.

Equivalence in the DCP model 1 0 3

Definition 3.2.1 (De Nicola [7], Milner [18]). Let S T = (P , A, T, po) be a labelled
transition system. Let p, q c P; then

(i) p ~o q is always true,
(ii) p ~'~k+l q if and only if, for all s c A*,

(1) for all p' in P such that p -~ p', there exists a q' in P such that

q2._~ q, and P' ~kq'

(2) for all q' in P such that q 2_~ q,, there exists a p' in P such that

p - ~ p ' and P ' ~ k q ' .

(iii) p ~ q if and only if p ~'~k q for all k >~ 0; then we say that p is observationally
equivalent to q.

There is a natural extension (given in the next definition) from this definition of

observational equivalence between two states of a same labelled transition system
to a definition of observational equivalence between two different labelled transition
systems [7].

Definition 3.2.2. Let S T 1 = (S b A, Tl ,Po) and ST2= (S2, A, T2, qo) be two distinct
labelled transition systems such that S1 c~ $2 = 0. If ST, defined as follows.

ST=(SlU S2k.){So}, A, TIU T2, So)

is the labelled transition system obtained as the result of the union of ST~ and ST2,
then ST~ ~ ST2 if and only if Po = qo in ST.

Starting from the notion of weak homomorphism in automata theory, Park [21]
proposed in 1981 a new way of defining the observational equivalence (called
bisimulation). Using this approach, we would say that two states, p and q, are

equivalent (denoted p ~-bis q) if and only if there exists a relation !~ (called bisimula-
tion) containing the pair (p, q) and guaranteeing that p and q can accomplish the
same sequences of visible actions always ending in equivalent states of ~)t. Formally,
we get the following definition.

Definition 3.2.3 (De Nicola [7], Park [21]). Let ST~=(S1, A, Tbpo) and ST2=
($2, A,/ '2 , qo) be two distinct labelled transition systems such that $1 c~ $2 = ~). If ,9l
is a relation between states of two systems, i.e..9t c S1 x $2, let us define F by

F(.~) = {(p, q)[VscA* (i) i f p ~ p ' then (=lq') (q ~ q ')
and (p', q') c !)t

(ii) if q ~ q' then (3p') (p ~ p')

and (p', q') ~ ,9t}.

A relation 3t is a bisimulation if ,~ _c F(!)t). The relation ~bis defined by

~,,,~- U !~
,'l~ ~ F(.~I~)

is called observation equivalence.

104 R. Fournier, G. yon Bochmann

Since F is a monotonic function on the lattice of relations ordered by inclusion,

the equivalence -~bis is obtained by taking the minimal fixed point of F [21].

Definition 3.2.4. Let ST, = (Sl, A, T,, Po) and STz = ($2, A, T2, qo) be two distinct
labelled transition systems. We say that ST1 ~bis STz if there exists a bisimulation

containing the pair (Po, qo).

Definition 3.2.5. Let R be a binary relation from A to B, we say that R is image-finite
if and only if for each a c A the set R~ = {yl(a, y) ~ R} is finite.

The two definitions, Definitions 3.2.2 and 3.2.4, are well studied in [10] and [24].

It is shown that if the relation ~ is an image-finite relation, then ~ and -~bis coincide;

however, if the relation ~ is not image-finite, then we can only obtain that

ST| ~bis ST2 implies ST! ~ STz [24].

Example 3.2.6. The processes P~ and P2 defined in Example 2.5 are not observational

equivalent. However, the two processes in Fig. 4 are obviously observational

equivalent.

3.3. Testing equivalence

We might take yet another approach to the problem of finding whether or not

two processes are equivalent. In fact, the external behaviour of a process can be
tested by means of a sequence of tests [20]. When considering nondeterministic
processes, not only do we want to know if they pass or not a specific test but also

if they will always behave the same way.

In this formulation, we shall consider a set of processes and a set of tests. We
shall say that two processes are equivalent (with respect to this set of tests) if they

pass exactly the same tests. This equivalence can be split into two preorder relations
one of which is formulated in terms of the ability to answer positively to a test, and
the other, in terms of the impossibility not to answer positively to a test.

Before defining formally what we mean by testing equivalence, we shall give some

useful definitions.

Definition 3.3.1. For any s c A*, we define

p after s = {P'I P ~ P'}

P after s = U (P after s).
peP

P:
a

b

Fig. 4.

Equivalence in the D C P model 105

For any finite subset L of A, we define

p MUST L if and only if (p ~ p ' implies that 3a e L such that p' ~>)

and

P MUST L if and only if p MUST L for all p c P.

Let B be a closed LOTOS behaviour expression (i.e. without free variables), the
labelled transition system associated with B, is Sys -- (S, A, T, So), where S is the set
of all behaviour expressions that could be derived starting with B, A denotes the
set of all visible actions, T denotes the set of transition relations starting at B or

one of its successors and So = B.

Definition 3.3.2 (De Nicola [7], ISO [14]). Let Sys l=(S~,At , 7"1, Sot) and Sys2 =
($2, A2, 1"2, So2). These systems could be extended to a set of common labels:
A = At u A2. We define the predicate (Syst red Sys2) by

(SySl red Sys2) if and only if

(Vt e A*)(VL c A) [(So2 after t) MUST L implies (Sol after t) MUST L)].

If BI and B2 are two behaviour expressions, we say that B 1 reduces B2 (denoted
B~ red B2) (see 2, 3) if and only if, for their respective transition system SySl , Sys2 ,

we have Sys~ red Sys2.

Definition 3.3.3. Two LOTOS behaviour expressions BI and B 2 a r e testing equivalent
(denoted B1 te B2) if and only if Bl red B2 and B2 red B1.

Using this equivalence, we can identify processes that are not distinguishable by
external experiences but would not be observationally equivalent.

Example 3.3.4. The two processes of Fig. 5 are not testing equivalent. However, the
two processes of Fig. 6 are testing equivalent.

P2

Fig. 5.

Pl ° b• P 2 "
b

d c

Fig. 6.

106 R. Fournier, G. yon Bochmann

3.4. Relationship between different equivalence relations

According to De Nicola [7], the diagram of Fig. 7 shows how these equivalence
relations are related.

bis

~ 2

ll
ta

11

Fig. 7.

4. Johnston's equivalence

We notice that Johnston's equivalence does not appear in the diagram of Fig. 7.
The goal of this section is to find a place for this equivalence within this diagram.

4.1. Johnston's equivalence and trace equivalence

First, we shall show that Johnston's equivalence is strictly finer than the trace

equivalence.

Proposition 4.1.1. There exist two processes P1 and P2 such that P1 ~ t P2 and
-7(Pl =j P2) is true.

Proof. Take P~ and ,°2 as in Example 2.5. To show that P1 - t P2 we must show that
Traces(P0 = Traces(P2). But Traces(P0 = {a, ab, ac} and Traces(P2)= {a, ab, ac}.

Now we shall establish that - 7 (P 1 =a P2) is true. One can easily see that P2 <~J P~-
So let us show that ~(P1 ~<J P:) is true. In fact, a is the only communication event
of P2 since P2 = {(a, P3+ P4)}. Consequently, we get P2 -% P3+P4 and P~ -% P3 and
P1 -% P4. Now P3+P4={(b, stop), (c, stop)} and we must show that none of two

possibilities P3 ~J P3 + P4 or P4 <~J P3 + ,°4 is true. But the first one is not true since
P3 has no c communication event. Similarly, the second one is also false. Henceforth,
-7(P1 <~j P2) is true. []

Theorem 4.1.2. Let P~ and P2 be two processes. I f P~ <<-j P2 then Traces(P2)c

Traces(P0.

Proof. The proof is done using induction on the length of s ~ Traces(P2) (denoted

Isl). Let s c Traees(P2) such that Isl = 1. We have that s c a . Since s ~Traees(P2),

Equivalence in the D C P model 107

there exists a process Q2 such that is, Q2)c P2. Furthermore, from the definition
of P~ <~a P2, there exists an (s~, Q~)~ P~ such that s = s~ and Q~ <~j Q2; that is,

s c Traces(P0.

Now suppose that the property is satisfied for all pairs of programs (P, Q) such

that P ~<j Q and for all s c Traces(Q) whose length is less than n. Take s ~ Traces(P2)

such that Is] = n. We may write s as ala2. • • a, where each ai ~ A. Let s ' = a2.. • a, ;

then]s' I = n - 1. However, s ~ Traces(P2) implies that there exist (n + 1) processes
P2o, P2~, • • •, P2, such tha t /2o = P2 and (ai, P2i)~ P2~i-~) for every i = 1 , . . . , n. Since
(a~, P2~)c P2o = P2, we get from the definition of <~j that there is an (a~, P~)~ P~

such that P~I <~J PZl. Since s ' 6 Traces(P2~), Is ' l : n - 1 < n and Pll ~<J Pz~ then, by
the induction hypothesis, s ' ¢Traces (P~) . Consequently, s ¢ T r a c e s (P 0 . Hence,

Traces(P2)~_Traces(P0. []

Corollary 4.1.3. Let P~ and P2 be two processes. I f P~ =j P2 then P~ - s P2.

Proof. By Theorem 4.1.2, P1 =J P2 implies that Traces(P2) = Traces(P~) which is the
same as P~ ~t P2 by Remark 3.1.2. []

4.2. Johnston's equivalence and testing equivalence

Proposition 4.2.1. There exist two processes P~ and P2 such that P1 te P2 and

-q(Pl =a P2) is true.

Proof. Consider the processes given in Fig. 6. By an argument similar to the one

given in Proposition 4.1.1, one can easily show that ~(P~ = j P2) is true. Now we
must show that P~ te P2. This fact is clearly true since both P~ and P2 will always

accept the sequences, a and ab, and will sometimes accept the sequences, abc or
abd, sometimes not. []

Proposition 4.2.2. There exist two processes P~ and P2 such that P~ =j P2 and
- I (P 1 te P2) is true.

Proof. Consider the processes given in Fig. 5. First we shall prove that P1 =a P2.
To prove that, we must prove that P~ ~ j P2 and P2 <~a P~.

(a) Let us show that P~ ~<a P2 ; that is, for each (e2, q2) ~ P2 there exists (el, ql) ~ P~
such that el = e2 and q~ ~j q2" We have two cases:

Case e2=d: Then q2={(e, 0)}. Similarly, in P1, we get that q~={(e, 0)}. Since
ql = q2 we certainly have q~ ~j q2"

Case e2=s: Then q2={(y, 0)}. Since P1 is given by P1 ={id, {(e, 0)}), is, 0),

is, {iY, 0)})}, there are two possible successors to P1 following the interaction s: 0

or {iY, 0)}. We may take q~ to be {(y, 0)}. Then q~--q2 and we certainly have that

q! ~J q2. This finally establishes that P~ <~j P2.

108 R. Fournier, G. yon Bochmann

(b) Now let us show that P2 ~<J P~; that is, for each (e , q~)~ P~ there exists
(e2, q2) c P2 such that el = e2 and q~ <~j q2. If (el, q~) E {(s, {iY, 0)}), id, {ie, 0)})} then
we choose ie2, q2) = ie~, q0. If iel, q~) = is, 0) then we take ie:, q2) = is, {iY, 0)}). But
we clearly have that {iY, 0)} ~<j 0. Hence we have proven that P~ = j P2.

Now we must prove that -~(P~ te P2) is true. In order to do this it is sufficient to
prove that either -I(P~ red P2) is true or ~(P2 red P~) is true. We shall prove that
-l(P~ red P2) is true. Let L = A and take s e Traces(P2). To prove our claim, it suffices
to prove that

(:IQ1)((P, ~:> Q1) ^ (Va ~ A)~(Q, ~))

^ ~((3 QE)((P2 ~ Q2) ^ (Va ~ A)~(Q2 ~))).

Let Q~ = 0 then for each a ~ L we have that (-~(Q~ ~) is true. Since

P2 = {(d, {(e, 0)}), is, {iY, 0}}}},

the only possible successor of Pz after an s interaction is Qz = {(y, 0)}. But Q2
and y c L! Hence -n(P~ red Pz) is true. []

Hence, in general, there is no relation between te and =j .

4.3. Johnston's equivalence and observational equivalence

As a consequence of results illustrated in Fig. 7 and results of Section 4.2, we
know that (PI =J P2) does not imply that (P1 ~bls P2). Otherwise, since (P1 =his P2)
implies that (P~ te P2) (see Fig. 7 and De Nicola [7]), (P1 =a P2) would imply that
(P~ te P2) which is contradicted by Proposition 4.2.2. Similarly, we can prove that
(P~ =J P2) does not imply that (P1 ~-2 P:).

The example used in Proposition 4.2.2 indicates that, if anything, ~b~s and = are
finer than =j .

In his Ph.D. Thesis, Sanderson [24, Chapter 5], gives some results concerning
the bisimulation as defined by Park [21]. Within this context, the equivalence is
obtained as the maximal fixed point of the relation used to define =k+l starting
with ~'k using the partial order induced by the set inclusion. It has been shown by
Tarski [26] that such a maximal fixed point always exist under these conditions.

Sanderson shows that bisimulation is stronger than observational equivalence
[24, Proposition 5.3]. Furthermore, a simpler relation than the one used to
obtain ~k+l from "~'k (using only derivations of length at most 1) gives the same
maximal fixed point. Consequently, in order to show that P ~-~is Q it is sufficient
to prove the existence of a relation ~ such that (P, Q)~ ~ and ,~)t ___ E(St) where E
denotes the simplified relation

E (~) = {(p, q) lVa c A ~ {e} (i) if p ~ p' then (3q')(q ~ q')

and (p', q') ~ ,~

(ii) if q ~ q ' then (3 p ') (p ~ p ')
and (p', q') c ~}

Equivalence in the DCP model 109

Hence we get [24, Corollary 5.5]

,~/~ c E (: R)

Q' then P' Q'. Proposition 4.3.1. Let P' and Q' be two processes. I f P'-bis =J

To prove this proposition, we shall need the following definition.

Definition 4.3.2. Let A be a process. We define the length of the process P (denoted
A(P)) to be the height of the tree representing P.

Proof of Proposition 4.3.1. The proof is done by induction on the maximum length
n of the processes; that is n = max{A (P'), A (Q')}. If n = 0, the proposition is clearly

true.
If n/> 1 and P' ~bis Q' then there exists a relation ~ such that (P' , Q') ~ ,~)~ and

!}~ ~ E(.~)Q. First let us show that P ' ~<a Q'. Take (s, O) c Q'; we must show that there
is a process P such that (s ,P)cP ' and P ~ j Q. Since (P' , Q ') c ~ and ~_c E(flt),

then (P' , Q') ~ E (~) . But, by hypothesis, Q' ~ Q; consequently, by the definition

of E(!)~) there exists P such that P ' ~ P and (P,Q)c ,~ . Now since
m a x { h (P) , h (Q) } < n and (P, Q)~!R, we get by the induction hypothesis that
P~<a Q.

Since E is symmetrical, we also have that Q' <~a P'. []

Now it is possible to insert Johnston's equivalence in the diagram of Fig. 7 as
shown in Fig. 8.

5. "Improvements" to Johnston's equivalence

One notices readily the awkward position of Johnston's equivalence in Fig. 8. In

~ ¢ - - - - > ~
bis

~2
= j

Fig. 8.

110 R. Fournier, G. yon Bochmann

order to bring back Johnston's equivalence onto the chain of equivalences that we
already have, we shall make some slight modifications to the DCP model. In this
section, we shall modify the partial order <~j so that the derived equivalence will
fit in the chain of equivalences shown in Fig. 7. At the same time, we shall be able

to distinguish between processes given in Proposition 4.2.2 which we do not want
to identify since they do not have the same behaviour under all experiments.

If we look at Fig. 5, we see that these processes are J-equivalent solely because
a deadlock represents the top element in the lattice of processes [6, 23] (that is, any
process can simulate [6] a deadlock). To denote a deadlock, we introduce a special
pair (tr, O) where o-~ A w {e}. We can now define a new partial order, which we

shall denote ~ j .

Definition 5.1. Let P and Q be two processes. Then P ~<~a Q if and only if, after
modifying the pairs defining P and Q in the following way: take every pair of P
and Q of the form is, 0) (s c A) and change it into a pair of the form is, {itr, 0)}),
then for each e2 ~ A' = A w {e, tr}, if ie2, q2) c P2 there exists iel, q~) ~ PI such that
el = e2 and q~ ~<j q2. That is, we use Definition 2.6 with a new alphabet A'.

Remark 5.2. Clearly this new relation (~ j) is reflexive and transitive. Hence, ~<~j

is a partial order on the set of processes.

Definition 5.3. Let P and Q be two processes. We say that P and Q are (trJ)-
equivalent (denoted P =,~j Q) if and only if P <~,~j Q and Q ~<,~j P.

Proposition 5.4. The equivalence relation =~j is strictly finer than the equivalence
relation =j .

Proof. It is easy to see that P =~a Q implies that P =a Q since the only place they
differ is in the treatment of deadlocks which are considered to be the top element
in the lattice of processes defined by ~<a.

Now to show that =~j is strictly finer than =j, we must provide an example of
two processes P~ and -/92 such that P1 =a P2 and -n(P~ =,~a]92) are true. Let us take

P~ and P2 as in Fig. 5. We know, by Proposition 4.2.2, that P1 =J P2 is true.

However, P1 =,~a P2 is not true; in fact, ,°2 ~< ~J P1 is not true. Take (s, {(or, 0)}) ~ P1.

We must find ie2, q2)c ,°2 such that e2 = s and q2 ~<,~J {i or, 0)}. Since

P2 = {is, r2), (d, r3)] r2 = {(y, {icr, 0)})} and r3 = {(e, {icr, 0)})}}

we must take q2 -- r2. Consequently, we have to prove that {iY, {io-, 0)})} ~ j {icr, 0)}
is not true which is obviously so. []

Even though this slight modification solves all problems for finite processes, we
still are far from a good solution for recursively defined processes as shown by the

following example.

Example 5.5. Let P and Q be the processes shown in Fig. 9. Then the reader can
easily verify that P = , j Q. Clearly, this fact does not correspond to an acceptable

situation since P will always be able to perform an ab-experiment whilst Q will

not always be able to do so. To get rid of this difficulty, we shall rather use the

following definition.

Definition 5.6. Following Definition 2.3, let p = {(el, q~) , . . . , (e,, q,)} be a process.
In the remainder of the paper the term process will represent an ordered pair

(p, {e~ , . . . , en}) whose first member is the process identifier and the second, the set

of all events that can be performed immediately by p including possibly o-. Therefore,

we shall write (p, { e l , . . . , e,}) = { (e l , q 0 , . . . , e,, q,)}.

We can now define a new partial order, which we shall denote by <~_a.

Definition 5.7. Let P = (p, Bi) and Q = (q, B2) be two processes written according
to the preceding definition. Then P ~<~.j Q if and only if BI = B2 and p ~<~j q.

Remark 5.8. Clearly this new relation (<~_j) is reflexive and transitive. Hence, <~_j
is a partial order on the set of processes.

P:

(2:

a

a

Fig. 9.

Equivalence in the D C P model 111

112 R. Fournier, G. yon Bochmann

Definition 5.9. Let P and Q be two processes. We say that P and Q are ((7-J)-
equivalent (denoted P =~_j Q) if and only if P ~<~.j Q and Q ~<~_j P.

Proposition 5.10. The equivalence relation =~_j is strictly finer than the equivalence
relation =j.

Proof. This follows easily from Proposition 5.4 and the definition of --~.j. []

Proposition 5.11. The example given in Example 2.5 (and Proposition 4.2.1) shows
that there are processes trace equivalent (testing equivalent respectively) which are not
(~r-J)-equivalent.

Furthermore, one can easily prove the following result copying the proof used

in Theorem 4.1.2 and Corollary 4.1.3. As a corollary of Proposition 5.10, we have
the following result.

Theorem 5.12. Let P~ and P2 be two processes, we have that P~ =,~_j P2 implies that

t"1 -tP2.

Before proving the following theorem which will ensure =~.j a place within the
chain of equivalences described in Fig. 7, we need the following lemma.

Lemma 5.13. Let Pl -- (P~, Bl) and 1°2 = (P2, B2) be two processes such that P1 =~-J P2.

I f (s, q~) ~ P1 then there is a pair (s, q2) ~ P2 such that q~ = ~.j q2.

Proof. Suppose on the contrary that there is no such pair. Since (s, ql)~ PI and
P1 =~-a P2 then B, = B2 and by definition of ~ _ j there is a pair (s, q4) e P2 such that
q4 <~ ~-J ql. But (s, q4) E 102 and Pt = ~-s P2 imply the existence of a pair (s, q3) ~ P1
such that q3 <~-J q4. If q3 -- q~, we are done. Otherwise, we repeat this operation;
since the processes that we consider are finitely branching, we shall eventually find

two processes qk and qk+2j such that qk = qk+2~. []

Theorem 5.14. The equivalence relations =,~_j and ~bls are the same relation (cfi
Fig. 10).

=o-J ~ ~ " ~ " ~bis

~2

te

N

Fig. 10.

Equivalence in the DCP model 113

Proof. Let P~ = (Pl, B1) and P2 = (P2, B2) be two processes. We must prove that
P~ =~-a P2 if and only if P~ ~-bis P2. By copying with slight modifications the proof

of Proposition 4.3.1 we get that P~ ~bis P2 implies that P~ =~.a P2.

Now suppose that P~ =~-a P2. We must find a relation ~ such that (P1, P2) 6

and ,~)tc_ E (~) . We claim that ~ = =~-a is such a relation. Take s 6 A u { e } . First,

let s = e. I f p~ ~ q~, then there is a pair of the form (r, q~) in P~. Since P1 =,-J P2,

B~ = B2. Therefore, there exists a pair (z, q2) in Pz such that ql =~.a q2 by Lemma
5.13. Now let s 6 A. If P1 :~ q~, we may suppose without loss of generality that we

have: P~ -~ q~, that is (s, q~) ~ P~. Since PI =~_a P2, there exists a pair (s, q2) in P2

such that q~ =,~-a q2 by Lemma 5.13. This concludes the proof. []

6. Conclusion

We have studied the equivalence defined in the Discrete Communicating Processes

model. In order to insert it in the chain of existing equivalences, we have slightly

modified the definition of the partial order inducing this equivalence and introduce

explicit deadlocks. The introduction of "explicit deadlock" was a nice way of

smoothing the behaviour of the equivalence relation =a. In doing so we obtained

a new equivalence finer than the original one and which turns out to be the

bisimulation defined by Park [21].
The modification introduced does not unduly lengthen the automatic verification

of processes' equivalence. In fact, it could even help to halt the verification process

quicker.

Acknowledgment

The authors wish to thank Professor R. De B. Johnston for enlighting discussions

and comments on an earlier draft of this paper. The authors also appreciate the

comments of A. Finkel on an earlier draft of this paper.

References

[1] J.A. Bergstra and J.W. Klop, The algebra of communicating processes with abstraction, Theoret.
Comput. Sci. 37 (1) (1985) 77-121.

[2] E. Brinksma and G. Scollo, Formal notions of implementation and conformance in LOTOS,
Memorandum 1NF-86-13, University of Twente, The Netherlands, November 1986.

[3] E. Brinksma, G. Scollo and C. Steenbergen, LOTOS Specifications, their implementations, and
their tests, in: B. Sarikaya, G. v. Bochmann eds., Protocol Specification, Testing, and Verification VI
(North-Holland, Amsterdam, 1987) 349-360.

[4] S.D. Brookes, On the relationship between CCS and CSP, in: Proc. ICALP'83, Lecture Notes in
Computer Science, Vol. 154 (Springer, Berlin, 1983) 83-96.

114 R. Fournier, G. yon Bochmann

[5] S.D. Brookes, C.A.R. Hoare and A.W. Roscoe, A theory of communicating sequential processes,
J. A C M 31 (1984) 560-599.

[6] R. De B. Johnston, A mathematical model of discrete communication processes, Tech. Report
INRS-T616communications No. 85-16, April 1985.

[7] R. De Nicola, Extensional equivalences for transition systems, Acta Inform. 24 (1987) 211-237.
[8] R. De Nicola and M. Hennessy, Testing equivalences for processes, Theoret. Comput. Sci. 34 (1984)

83-133.
[9] M. Hennessy, Acceptance trees, J. A C M 32 (4) (1985) 896-928.

[10] M. Hennessy and R. Milner, Algebraic laws for nondeterminism and concurrency, J. A C M 32
(1985) 137-161.

[11] C.A.R. Hoare, Communicating sequential processes, Comm. A C M 21 (1978) 666-677.
[12] C.A.R. Hoare, A model for communicating sequential processes, Technical Monograph Prg-22,

Computing Laboratory, University of Oxford, 1981.
[13] C.A.R. Hoare, Processus Sdquentiels Communicants (Masson, Paris, 1987).
[14] ISO, Information Processing Systems-Open systems interconnection-LOTOS, A formal description

technique based on the temporal ordering of observational behaviour, DIS 8807, July 1987.
[15] M. Itoh, Concurrency issues in CCS and the realizability by sequential processes, In preparation.
[16] R. Keller, Formal verification of parallel programs, Comm. ACM 19 (1976) 561-572.
[17] G.J. Milne, CIRCAL and the representation of communication, concurrency, and time, A C M Trans.

Programming Languages Syst. 7 (2) 270-298.
[18] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science, Vol. 92

(Springer, Berlin, 1980).
[19] R. Milner, Calculi for synchrony and asynchrony, Theoret. Comput. Sci. 25 (1983) 267-310.
[20] E. Moore, Gedanken experiments on sequential machines, in: C.E. Shannon and J. McCarthy eds.,

Automata Studies, (Princeton University Press• Princeton, 1956).
[21] D. Park, Concurrency and automata on infinite sequences, in: Proc. 5th GI Conference, Lecture

Notes in Computer Science, Vol. 104 (Springer, Berlin, 1981) 167-183.
[22] K. Rea, Automating the analysis and synthesis of discrete communicating processes, Master's

Thesis, McGill University, 1984.
[23] K. Rea and R. De B. Johnston, Automated analysis of discrete communication behaviour, IEEE

Trans. Software Engng., 13(10) (1987) 1115-1126.
[24] M.T. Sanderson Proof techniques for CCS, Ph.D. Thesis~Jdniyersity of Edinburgh CST-19-82 1982.
[25] M.B. Smyth, Powerdomains, Theory of computflfion~,,, Report 12,'I~epartment of Computing Science,

University of Warwick, 1976. ~ /
[26] A. Tarski, A lattice-theoretical fixpoint theorem and its applications, PacificJ. Math. 5 (1955) 285-309.

