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Abstract 

Fournier, R. and G. von Bochmann, The equivalence in the DCP model, Theoretical Computer 
Science 87 (1991) 97-114. 

The ever increasing complexity of systems stimulates research in the area of processes equivalences. 
In this paper, processes are considered as black boxes, characterized by their external interactions 
only, and the equivalences are based on this assumption. The equivalence relation induced from 
the partial order defined in Johnston's model of Discrete Communicating Processes is studied 
with the intention of finding its place within the chain of existing equivalences (namely, trace 
equivalence, testing equivalence, bisimulation and observational equivalence). Unfortunately, this 
model does not compare easily with the others. However a modification to the original model, 
consisting in keeping more information within a process identifier, namely all of its immediately 
performable events, and explicitly writing deadlocks, gives a new equivalence relation =~-a which 
is finer than the original one and which has the property of being equivalent to bisimulation. 

I. Introduction 

S i n c e  t h e  b e g i n n i n g  o f  t h e  e igh t i e s ,  s e v e r a l  a l g e b r a i c  t h e o r i e s  o f  p r o c e s s e s  h a v e  

a p p e a r e d  s u c h  as  C C S  [18] ,  C S P  [13] ,  S C C S  [19] ,  A C P  [1] ,  C I R C A L  [17] ,  D C P  

[6, 23] ,  L O T O S  [14] ,  d C C S  [15] .  W i t h i n  e a c h  t h e o r y  a n  e q u i v a l e n c e  r e l a t i o n  is 

* This work was partially supported by the Natural Sciences and Engineering Research Council of 
Canada. 
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defined to help determine whether two processes are equivalent or not. The theory 
of  equivalences is very useful since it allows us to replace a complex system (or 
parts of  it) by a simpler equivalent one facilitating the analysis of the entire system 
and the verification of its properties. 

This paper deals with the equivalence relation induced from the partial order 

defined in the DCP model. Johnston's model DCP (Discrete Communicating Proces- 
ses) [6, 23] permits the formal specification and meaningful analysis of the behaviour 
of distributed computing systems. Furthermore, it incorporates computational tools 
to aid analysis and verification [22] which might make it even more appealing. In 

fact, we shall try to find its place within some of the existing equivalences. Since it 

proves impossible to realize our goal with the original definition, we shall show 
how a modification to the original model helps us to fit this new equivalence relation 

in the chain of existing equivalences. We shall also prove that this new equivalence 
is finer than the original one. 

All equivalences considered in this paper are based on the idea that two systems 
are equivalent if they cannot be distinguished by (external) observation. However, 
different forms of observation are considered. We use the term process to represent 
an abstract entity able to perform internal (invisible) actions as well as to communi- 

cate with other processes in its environment via communcation events (interactions). 

This paper is organized as follows: Section 2 gives a brief overview of  the model 

DCP [6, 23]; Section 3 introduces some equivalences on labelled transitions systems 
and reminds the reader of  the relations between them [7]; Section 4 shows how the 
equivalence relation induced from the partial order in DCP relates with the above 
mentioned equivalences; Section 5 shows how the introduction of explicit deadlock 

in DCP pushes the DCP equivalence into the chain of equivalences described in 
Section 3; and Section 6 gives a short conclusion. 

2. Discrete communication processes 

In order to compare the equivalence defined in Johnston's model of Discrete 
Communication Processes (DCP) [6, 23] with other equivalences (such as observa- 
tional equivalence [18], bisimulation [21], trace equivalence [12] and testing 

equivalence [3, 7, 8]), we shall adapt Johnston's equivalence to Labelled Transition 
Systems (LTS). 

Notice that since their introduction by Keller [16], transition systems have been 
used as an underlying model for many proposed models of parallelism. In fact, 

transition systems are a relational model based on two primitive notions: state and 
transition. Since it is possible, for the DCP model, to define the notion of global 

state and a notion of indivisible action causing a state transition, we can define for 
each DCP process a corresponding transition system. This correspondence deter- 

mines an interleaving semantics for the model. 
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In this paper ,  we shall consider  (following De Nicola  [7]) a part icular  class o f  

nondeterminis t ic  transit ion systems which can be used to model  systems controllable 

through interactions with a surrounding environment ,  but  also capable o f  performing 

internal actions r which cannot  be influenced or even seen by any external agent. 

Def in i t ion  2.1. A labelled transition system ( L T S )  is a quadruple  (S, A, T, So) where 

(i) S is a countable  n o n e m p t y  set o f  states; 

(ii) A is a countable  set o f  elementary actions; 

(iii) T is a funct ion f rom A w  {r} into ~ ( S  x S) where T(/x) is called a transition 

relation and denoted  by -% for each /x  ~ A w {r}; 

(iv) So ~ S is the initial state of  the labelled transit ion system. 

In  this definition, each binary relation -% shows the effect o f  the elementary action 

/z on the system. In fact, if q, q' c S and (q, q') ~ -% (denoted q -% q') this means 

that if the system is in state q, the execution o f / x  will bring the system into state 

q';  q ~ q'  indicates that  the system while in state q can perform a silent move to 

state q'. 

Such a transit ion system can obviously be unrol led into a tree whose nodes are 

the states, the root  being the initial state, and whose arcs are labelled with elements 

of  A w { r } .  

Def in i t ion  2.2. Two labelled transition systems with the same set o f  elementary 

actions, LTS1 = ($1, A, T1, So,) and LTS2 = ($2, A, T2, so2) are said to be isomorphic 

if there exists a one- to-one  cor respondence  f :  S, ~ $2 such that 

(i) s,, -% Sl2 if and only i f f ( s l , )  -%f(s ,2)  for all a ~ A and all s,1, s,26 S,; 

(ii) f(s01) = So2. 

In this paper ,  we shall use the fol lowing notat ions:  
• A denotes  the set o f  visible actions: a, b, c , . . .  called elementary actions in the 

above definition; 

• A* denotes  the set o f  strings o f  elements o f  A whose elements are s, s ' , . . ,  and 
e, the empty  chain; 

• r denotes  the invisible (internal) action (defined earlier); 

• A ,  = A u {r} whose elements a re /z , , / z2 ,  • • • ; 

• p -,-2..-~% q is the abbreviat ion o f  3 p o , . . .  , p ,  such that 
'~1 ~2 'tin 

Po = P  ~ P,--+ • .. ~ P , - I  ---~ P, = q; 

• p ~,"2...",,, means that  there exists a q such that  p ~,"2 ",,~ q; 

• p ~  q means that there exists an n~>0 such that  p_Z; q; 

• p =~ q means that there exist p, and P2 such that p ~ , p ,  -% P2 ~ q; 
a l a  2 . . .  a • p ";, q means that  there exist Po, • • •, P, such that 

a l a 2 a . _  1 a n 

P = Po ~ P, 3 . . .  )" Pn-l:::f Pn = q ;  

• p g:> means that there exists q such that p ~ q. 
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Now let us go back to the DCP model [6, 23]. As in Milner's CCS [18], the DCP 

model uses the external behaviour to define processes which are described by the 

interactions that they exchange with their environment,  as follows. 

Definition 2.3 (Johnston [6]; Rea and Johnston [23]). A process p can be defined 

as a set {Cel, q 0 , . . . ,  Ce,, q.)} of  pairs where each el is a communicat ion event and 

each q, is a subsequent process or behaviour. 

This should be interpreted as follows: the process p offers, for all i, to exchange 

communicat ion el with its environment; if it is accepted then process p will proceed 

as process ql. This definition is inherently recursive, a process being defined in terms 

of processes. The behaviour of  a discrete communicat ion system is characterized 

by the pattern (usually infinite) of  its exchanges with the environment; it is this 

behaviour  which is called a discrete communicat ion process. These processes can 

be represented by infinite trees whose branches are labelled with communicat ion 
events and whose nodes represent the initial process (root) and its successors. 

At any given time a process may emit a message or absorb one. The emission of  

message a will be denoted by a !, while the absorption of message a will be denoted 

by a?. 

Remark 2.4. A DCP process p can be viewed as the following labelled transition 

system CS, A, T, p), where 
(i) S is the set containing p and all its successors; 

(ii) A is the set of  all communicat ion events used in the definition of p or one 

of  its successors; 

(iii) T is a set of  transition relations whose elements are binary relations on S 

denoted by -~ for each ~ c A u { r } ,  defined as follows: if p '  is p or one of its 

successors and Cp~, q) ~ p '  then we have that (p', q) ~ --% which we write p '  --% q. 

Example 2.5. I f  P3={Cb, stop)} and P4={(c, stop)}. Then we define P~= 
{Ca, P3), Ca,/)4)} which is represented by the tree in Fig. 1. 

Furthermore if P +  Q denotes the process that behaves either like P or Q depend- 

ing on the first offer made by the environment, then/)2 = {(a,/)3 + P4)} is represented 

by the tree in Fig. 2. 

P1 : 

b c 

Fig. 1. 

Fig. 2. 
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Intuitively we would like to say that two processes P~ and P2 are "related" [6] 
if, for instance, whatever communication event P2 can offer, P~ can offer it too. 
Then we shall say that P~ simulates P2 [6, 23]. Formally, we have the following 

definition. 

Definition 2.6 (Johnston [6]; Rea, Johnston [23]). Let P~ and P2 be two processes. 

We say that P~ simulates P2 (denoted P~ <~a P2) if and only if for each (e2, q2) C P2 
there exists (e~, q~) c P~ such that e~ = e2 and q~ <~a q2. Furthermore, we say that P~ 
and P2 are J-equivalent, as Johnston-equivalent, (denoted P~ =a P2) if and only if 

Pl <~a P2 and P2 ~.1 P~- 

Remark 2.7. The processes P~ and Pz defined in Example 2.5 are not J-equivalent. 

Remark 2.8. The partial order ~<a corresponds to the Smyth ordering [25]. Obviously, 
=a is an equivalence relation. In fact, two processes are J-equivalent if they have 
the same minimal behaviour. For example, 

P, = {(s, 0), (s, {(y, 0)}), (d, [(e, 0)})} 

and 

P2 = {(s, {(y, 0)}), (d, {(e, 0)})} 

are J-equivalent. 

We can reformulate the above definition in terms of transition systems. We would 
get the following definition. 

Definition 2.9. Let LTSt = (Sl, A, T~, $01) and LTS2 = (S2, A, T2, So2) be two labelled 
transition systems with the same set of actions. For i = 1, 2, let LTSi(si) denote the 
subsystem of LTSi which has si as its initial state, that is, the subtree of LTSi which 
has si as its root. LTSt simulates LTS2 (denoted LTSI ~a LTS2) if and only if for 
all t c A and for all s2 c $2 such that So~ ~ s2, there exists an sl ~ $1 such that So~ ~ st 
and LTS~(s0 <~a LTS2(s2). 

3. Overview of other equivalences 

In this section, we shall first briefly recall the definitions of some equivalences 
and show how they are related. The interested reader is referred to De Nicola [7] 

for a more extensive analysis. In his paper [7], De Nicola considers only processes 
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that can be represented by finitely branching trees. We shall also make this assump- 
tion since those DCP processes of practical interest can always be represented by 
such trees. 

3.1. Trace equivalence 

A natural approach to system equivalence is considering two systems as equivalent 
that can perform exactly the same sequences of visible actions (not considering any 
internal actions) [12]. 

Definition 3.1.1 (De Nicola [7], Hoare [11]). Let TS~=(P,A,  T~, Po) and TS2 = 
(Q, A, T2, qo) be two transition systems. Then we say that TS~ is trace equivalent to 

TS2 (denoted TS~ ~t TS2) if and only if 

(Vs ~ A*) (Po ~ if and only if qo ~ ) .  

Let us define Traces(q) = {s c A* [q ~ }  to be set of all possible traces of process q. 

Remark 3.1.2. TS~ - t  TS2 if and only if Traces(po) = Traces(qo); furthermore, - t  is 
obviously an equivalence relation. 

This equivalence is sometimes called strings equivalence [7]. 
It can be easily seen that the two processes of Example 2.5 are trace equivalent 

since Traces(Pi)= {a, ab, ac} = Traces(P2). However, if P3 is the process shown in 
Fig, 3, then obviously P2 and P3 are not trace equivalent. 

This equivalence is used in automata and language theories; it is also the basis 
of many semantics proposed for Hoare's CSP [5, 11, 12, 13]. 

P3 : 

Fig. 3. 

3.2. Observational equivalence and bisimulation 

Milner defines three equivalences in his CCS model. Two of them are of no 
interest since they are much too strong to be of any use. Therefore, we shall only 
consider the observational equivalence which permits the absorption of internal 
actions. 
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Definition 3.2.1 (De Nicola [7], Milner [18]). Let S T = ( P ,  A, T, po) be a labelled 
transition system. Let p, q c P; then 

(i) p ~o q is always true, 
(ii) p ~'~k+l q if and only if, for all s c A*, 

(1) for all p' in P such that p -~ p', there exists a q' in P such that 

q2._~ q, and P' ~kq' 

(2) for all q' in P such that q 2_~ q,, there exists a p' in P such that 

p - ~ p '  and P ' ~ k q ' .  

(iii) p ~ q if and only if p ~'~k q for all k >~ 0; then we say that p is observationally 
equivalent to q. 

There is a natural extension (given in the next definition) from this definition of 

observational equivalence between two states of  a same labelled transition system 
to a definition of observational equivalence between two different labelled transition 
systems [7]. 

Definition 3.2.2. Let S T  1 = (S b A, Tl ,Po ) and ST2= (S2, A, T2, qo) be two distinct 
labelled transition systems such that S1 c~ $2 = 0. If ST, defined as follows. 

ST=(SlU S2k.){So}, A, TIU T2, So) 

is the labelled transition system obtained as the result of the union of ST~ and ST2, 
then ST~ ~ ST2 if and only if Po = qo in ST. 

Starting from the notion of weak homomorphism in automata theory, Park [21] 
proposed in 1981 a new way of defining the observational equivalence (called 
bisimulation). Using this approach, we would say that two states, p and q, are 

equivalent (denoted p ~-bis q) if and only if there exists a relation !~ (called bisimula- 
tion) containing the pair (p, q) and guaranteeing that p and q can accomplish the 
same sequences of visible actions always ending in equivalent states of ~)t. Formally, 
we get the following definition. 

Definition 3.2.3 (De Nicola [7], Park [21]). Let ST~=(S1, A, Tbpo) and ST2= 
($2, A,/ '2 ,  qo) be two distinct labelled transition systems such that $1 c~ $2 = ~). If ,9l 
is a relation between states of two systems, i.e..9t c S1 x $2, let us define F by 

F(.~) = {(p, q)[VscA* (i) i f p ~ p '  then (=lq') ( q ~ q ' )  
and (p', q') c !)t 

(ii) if q ~ q' then (3p')  (p ~ p') 

and (p', q') ~ ,9t}. 

A relation 3t is a bisimulation if ,~ _c F(!)t). The relation ~bis defined by 

~,,,~- U !~ 
,'l~ ~ F(.~I~ ) 

is called observation equivalence. 
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Since F is a monotonic function on the lattice of  relations ordered by inclusion, 

the equivalence -~bis is obtained by taking the minimal fixed point of  F [21]. 

Definition 3.2.4. Let ST, = (Sl, A, T,, Po) and STz = ($2, A, T2, qo) be two distinct 
labelled transition systems. We say that ST1 ~bis STz if there exists a bisimulation 

containing the pair (Po, qo). 

Definition 3.2.5. Let R be a binary relation from A to B, we say that R is image-finite 
if and only if for each a c A the set R~ = {yl(a, y) ~ R} is finite. 

The two definitions, Definitions 3.2.2 and 3.2.4, are well studied in [10] and [24]. 

It is shown that if the relation ~ is an image-finite relation, then ~ and -~bis coincide; 

however, if the relation ~ is not image-finite, then we can only obtain that 

ST|  ~bis ST2 implies ST! ~ STz [24]. 

Example 3.2.6. The processes P~ and P2 defined in Example 2.5 are not observational 

equivalent. However, the two processes in Fig. 4 are obviously observational 

equivalent. 

3.3. Testing equivalence 

We might take yet another  approach to the problem of finding whether or not 

two processes are equivalent. In fact, the external behaviour of  a process can be 
tested by means of a sequence of tests [20]. When considering nondeterministic 
processes, not only do we want to know if they pass or not a specific test but also 

if they will always behave the same way. 

In this formulation, we shall consider a set of  processes and a set of tests. We 
shall say that two processes are equivalent (with respect to this set of  tests) if they 

pass exactly the same tests. This equivalence can be split into two preorder relations 
one of which is formulated in terms of the ability to answer positively to a test, and 
the other, in terms of the impossibility not to answer positively to a test. 

Before defining formally what we mean by testing equivalence, we shall give some 

useful definitions. 

Definition 3.3.1. For any s c A*, we define 

p after s = {P'I P ~ P'} 

P after s = U (P after s). 
peP 

P: 
a 

b 

Fig. 4. 
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For any finite subset L of A, we define 

p MUST L if and only if (p ~ p '  implies that 3a  e L such that p' ~>) 

and 

P MUST L if and only if p MUST L for all p c P. 

Let B be a closed LOTOS behaviour expression (i.e. without free variables), the 
labelled transition system associated with B, is Sys -- (S, A, T, So), where S is the set 
of all behaviour expressions that could be derived starting with B, A denotes the 
set of all visible actions, T denotes the set of transition relations starting at B or 

one of its successors and So = B. 

Definition 3.3.2 (De Nicola [7], ISO [14]). Let Sys l=(S~,At ,  7"1, Sot) and Sys2 = 
($2, A2, 1"2, So2). These systems could be extended to a set of common labels: 
A = At u A2. We define the predicate (Syst red Sys2) by 

(SySl red Sys2) if and only if 

(Vt e A*)(VL c A) [(So2 after t) MUST L implies (Sol after t) MUST L)]. 

If BI and B2 are two behaviour expressions, we say that B 1 reduces B2 (denoted 
B~ red B2) (see 2, 3) if and only if, for their respective transition system SySl ,  Sys2 ,  

we have Sys~ red Sys2. 

Definition 3.3.3. Two LOTOS behaviour expressions BI and B 2 a r e  testing equivalent 
(denoted B1 te B2) if and only if Bl red B2 and B2 red B1. 

Using this equivalence, we can identify processes that are not distinguishable by 
external experiences but would not be observationally equivalent. 

Example 3.3.4. The two processes of Fig. 5 are not testing equivalent. However, the 
two processes of Fig. 6 are testing equivalent. 

P2 

Fig. 5. 

Pl ° b• P 2 "  
b 

d c 

Fig. 6. 
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3.4. Relationship between different equivalence relations 

According to De Nicola [7], the diagram of Fig. 7 shows how these equivalence 
relations are related. 

bis 

~ 2  

ll 
ta 

11 

Fig. 7. 

4. Johnston's equivalence 

We notice that Johnston's equivalence does not appear in the diagram of Fig. 7. 
The goal of  this section is to find a place for this equivalence within this diagram. 

4.1. Johnston's equivalence and trace equivalence 

First, we shall show that Johnston's equivalence is strictly finer than the trace 

equivalence. 

Proposition 4.1.1. There exist two processes P1 and P2 such that P1 ~ t  P2 and 
-7(Pl =j P2) is true. 

Proof. Take P~ and ,°2 as in Example 2.5. To show that P1 - t  P2 we must show that 
Traces(P0 = Traces(P2). But Traces(P0 = {a, ab, ac} and Traces(P2)= {a, ab, ac}. 

Now we shall establish that - 7 ( P  1 =a  P2) is true. One can easily see that P2 <~J P~- 
So let us show that ~(P1 ~<J P:) is true. In fact, a is the only communication event 
of P2 since P2 = {(a, P3+ P4)}. Consequently, we get P2 -% P3+P4 and P~ -% P3 and 
P1 -% P4. Now P3+P4={(b, stop), (c, stop)} and we must show that none of two 

possibilities P3 ~J P3 + P4 or P4 <~J P3 + ,°4 is true. But the first one is not true since 
P3 has no c communication event. Similarly, the second one is also false. Henceforth, 
-7(P1 <~j P2) is true. [] 

Theorem 4.1.2. Let P~ and P2 be two processes. I f  P~ <<-j P2 then Traces(P2)c 

Traces(P0.  

Proof. The proof  is done using induction on the length of s ~ Traces(P2) (denoted 

Isl). Let s c Traees(P2) such that Isl = 1. We have that s c a .  Since s ~Traees(P2), 
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there exists a process Q2 such that is, Q2)c P2. Furthermore, from the definition 
of P~ <~a P2, there exists an (s~, Q~)~ P~ such that s = s~ and Q~ <~j Q2; that is, 

s c Traces(P0.  

Now suppose that the property is satisfied for all pairs of  programs (P, Q) such 

that P ~<j Q and for all s c Traces(Q) whose length is less than n. Take s ~ Traces(P2) 

such that Is] = n. We may write s as ala2. • • a, where each ai ~ A. Let s ' =  a2..  • a, ; 

then ]s' I = n - 1. However,  s ~ Traces(P2) implies that there exist (n + 1) processes 
P2o, P2~, • • •, P2, such tha t /2o  = P2 and (ai, P2i)~ P2~i-~) for every i =  1 , . . . ,  n. Since 
(a~, P2~)c P2o = P2, we get from the definition of <~j that there is an (a~, P~)~  P~ 

such that P~I <~J PZl. Since s ' 6  Traces(P2~), Is ' l :  n - 1  < n and Pll ~<J Pz~ then, by 
the induction hypothesis, s ' ¢Traces (P~) .  Consequently, s ¢ T r a c e s ( P 0 .  Hence, 

Traces(P2)~_Traces(P0. [] 

Corollary 4.1.3. Let P~ and P2 be two processes. I f  P~ =j P2 then P~ - s  P2. 

Proof. By Theorem 4.1.2, P1 =J P2 implies that Traces(P2) = Traces(P~) which is the 
same as P~ ~t  P2 by Remark 3.1.2. [] 

4.2. Johnston's equivalence and testing equivalence 

Proposition 4.2.1. There exist two processes P~ and P2 such that P1 te P2 and 

-q(Pl =a P2) is true. 

Proof. Consider the processes given in Fig. 6. By an argument similar to the one 

given in Proposition 4.1.1, one can easily show that ~(P~ = j  P2) is true. Now we 
must show that P~ te P2. This fact is clearly true since both P~ and P2 will always 

accept the sequences, a and ab, and will sometimes accept the sequences, abc or 
abd, sometimes not. [] 

Proposition 4.2.2. There exist two processes P~ and P2 such that P~ =j  P2 and 
- I ( P  1 te P2) is true. 

Proof. Consider the processes given in Fig. 5. First we shall prove that P1 =a P2. 
To prove that, we must prove that P~ ~ j  P2 and P2 <~a P~. 

(a) Let us show that P~ ~<a P2 ; that is, for each (e2, q2) ~ P2 there exists (el, ql) ~ P~ 
such that el = e2 and q~ ~j  q2" We have two cases: 

Case e2=d:  Then q2={(e, 0)}. Similarly, in P1, we get that q~={(e, 0)}. Since 
ql = q2 we certainly have q~ ~j  q2" 

Case e2=s: Then q2={(y, 0)}. Since P1 is given by P1 ={id, {(e, 0)}), is, 0), 

is, {iY, 0)})}, there are two possible successors to P1 following the interaction s: 0 

or {iY, 0)}. We may take q~ to be {(y, 0)}. Then q~--q2 and we certainly have that 

q! ~J  q2. This finally establishes that P~ <~j P2. 
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(b) Now let us show that P2 ~<J P~; that is, for each (e ,  q~)~ P~ there exists 
(e2, q2) c P2 such that el = e2 and q~ <~j q2. If (el, q~) E {(s, {iY, 0)}), id, {ie, 0)})} then 
we choose ie2, q2) = ie~, q0. If iel, q~) = is, 0) then we take ie:, q2) = is, {iY, 0)}). But 
we clearly have that {iY, 0)} ~<j 0. Hence we have proven that P~ = j P2. 

Now we must prove that -~(P~ te P2) is true. In order to do this it is sufficient to 
prove that either -I(P~ red P2) is true or ~(P2 red P~) is true. We shall prove that 
-l(P~ red P2) is true. Let L = A and take s e Traces(P2). To prove our claim, it suffices 
to prove that 

(:IQ1)((P, ~:> Q1) ^ (Va ~ A)~(Q,  ~ )) 

^ ~( (3  QE)((P2 ~ Q2) ^ (Va ~ A)~(Q2 ~ ))). 

Let Q~ = 0 then for each a ~ L we have that (-~(Q~ ~ ) is true. Since 

P2 = {(d, {(e, 0)}), is, {iY, 0}}}}, 

the only possible successor of Pz after an s interaction is Qz = {(y, 0)}. But Q2 
and y c L! Hence -n(P~ red Pz) is true. [] 

Hence, in general, there is no relation between te and =j .  

4.3. Johnston's equivalence and observational equivalence 

As a consequence of results illustrated in Fig. 7 and results of Section 4.2, we 
know that (PI =J P2) does not imply that (P1 ~bls P2). Otherwise, since (P1 =his P2) 
implies that (P~ te P2) (see Fig. 7 and De Nicola [7]), (P1 =a P2) would imply that 
(P~ te P2) which is contradicted by Proposition 4.2.2. Similarly, we can prove that 
(P~ =J P2) does not imply that (P1 ~-2 P:). 

The example used in Proposition 4.2.2 indicates that, if anything, ~b~s and = are 
finer than =j .  

In his Ph.D. Thesis, Sanderson [24, Chapter 5], gives some results concerning 
the bisimulation as defined by Park [21]. Within this context, the equivalence is 
obtained as the maximal fixed point of the relation used to define =k+l starting 
with ~'k using the partial order induced by the set inclusion. It has been shown by 
Tarski [26] that such a maximal fixed point always exist under these conditions. 

Sanderson shows that bisimulation is stronger than observational equivalence 
[24, Proposition 5.3]. Furthermore, a simpler relation than the one used to 
obtain ~k+l from "~'k (using only derivations of length at most 1) gives the same 
maximal fixed point. Consequently, in order to show that P ~-~is Q it is sufficient 
to prove the existence of a relation ~ such that (P, Q)~ ~ and ,~)t ___ E(St) where E 
denotes the simplified relation 

E ( ~ )  = {(p, q) lVa c A ~ {e} (i) if p ~ p' then (3q')(q ~ q') 

and (p', q') ~ ,~ 

(ii) if q ~ q '  then ( 3 p ' ) ( p ~ p ' )  
and (p', q') c ~} 
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Hence we get [24, Corollary 5.5] 

,~/~ c E ( : R )  

Q' then P' Q'. Proposition 4.3.1. Let P' and Q' be two processes. I f  P'-bis =J 

To prove this proposition, we shall need the following definition. 

Definition 4.3.2. Let A be a process. We define the length of the process P (denoted 
A(P)) to be the height of the tree representing P. 

Proof of Proposition 4.3.1. The proof  is done by induction on the maximum length 
n of the processes; that is n = max{A (P'),  A (Q')}. If n = 0, the proposition is clearly 

true. 
If n/> 1 and P' ~bis Q' then there exists a relation ~ such that (P' ,  Q') ~ ,~)~ and 

!}~ ~ E(.~)Q. First let us show that P '  ~<a Q'. Take (s, O ) c  Q'; we must show that there 
is a process P such that ( s ,P )cP '  and P ~ j  Q. Since (P' ,  Q ' ) c ~  and ~_c E(flt), 

then (P' ,  Q') ~ E ( ~ ) .  But, by hypothesis, Q' ~ Q; consequently, by the definition 

of E(!)~) there exists P such that P ' ~ P  and (P,Q)c ,~ .  Now since 
m a x { h ( P ) , h ( Q ) } < n  and (P, Q)~!R, we get by the induction hypothesis that 
P~<a Q. 

Since E is symmetrical, we also have that Q' <~a P'. [] 

Now it is possible to insert Johnston's equivalence in the diagram of Fig. 7 as 
shown in Fig. 8. 

5. "Improvements" to Johnston's equivalence 

One notices readily the awkward position of Johnston's equivalence in Fig. 8. In 

~ ¢ - - - - >  ~ 
bis 

~2  
= j  

Fig. 8. 
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order to bring back Johnston's equivalence onto the chain of equivalences that we 
already have, we shall make some slight modifications to the DCP model. In this 
section, we shall modify the partial order <~j so that the derived equivalence will 
fit in the chain of equivalences shown in Fig. 7. At the same time, we shall be able 

to distinguish between processes given in Proposition 4.2.2 which we do not want 
to identify since they do not have the same behaviour under all experiments. 

If we look at Fig. 5, we see that these processes are J-equivalent solely because 
a deadlock represents the top element in the lattice of processes [6, 23] (that is, any 
process can simulate [6] a deadlock). To denote a deadlock, we introduce a special 
pair (tr, O) where o-~ A w {e}. We can now define a new partial order, which we 

shall denote ~ j .  

Definition 5.1. Let P and Q be two processes. Then P ~<~a Q if and only if, after 
modifying the pairs defining P and Q in the following way: take every pair of P 
and Q of the form is, 0) (s c A) and change it into a pair of the form is, {itr, 0)}), 
then for each e2 ~ A' = A w {e, tr}, if ie2, q2) c P2 there exists iel, q~) ~ PI such that 
el = e2 and q~ ~<j q2. That is, we use Definition 2.6 with a new alphabet A'. 

Remark 5.2. Clearly this new relation ( ~ j )  is reflexive and transitive. Hence, ~<~j 

is a partial order on the set of processes. 

Definition 5.3. Let P and Q be two processes. We say that P and Q are (trJ)- 
equivalent (denoted P =,~j Q) if and only if P <~,~j Q and Q ~<,~j P. 

Proposition 5.4. The equivalence relation =~j is strictly finer than the equivalence 
relation =j .  

Proof. It is easy to see that P =~a Q implies that P =a Q since the only place they 
differ is in the treatment of  deadlocks which are considered to be the top element 
in the lattice of processes defined by ~<a. 

Now to show that =~j is strictly finer than =j,  we must provide an example of 
two processes P~ and -/92 such that P1 =a P2 and -n(P~ =,~a ]92) are true. Let us take 

P~ and P2 as in Fig. 5. We know, by Proposition 4.2.2, that P1 =J P2 is true. 

However, P1 =,~a P2 is not true; in fact, ,°2 ~< ~J P1 is not true. Take (s, {(or, 0)}) ~ P1. 

We must find ie2, q2)c ,°2 such that e2 = s and q2 ~<,~J {i or, 0)}. Since 

P2 = {is, r2), (d, r3) ] r2 = {(y, {icr, 0)})} and r3 = {(e, {icr, 0)})}} 

we must take q2 -- r2. Consequently, we have to prove that {iY, {io-, 0)})} ~ j  {icr, 0)} 
is not true which is obviously so. [] 

Even though this slight modification solves all problems for finite processes, we 
still are far from a good solution for recursively defined processes as shown by the 

following example. 



Example 5.5. Let P and Q be the processes shown in Fig. 9. Then the reader can 
easily verify that P = , j  Q. Clearly, this fact does not correspond to an acceptable 

situation since P will always be able to perform an ab-experiment whilst Q will 

not always be able to do so. To get rid of  this difficulty, we shall rather use the 

following definition. 

Definition 5.6. Following Definition 2.3, let p = {(el, q~) , . . . ,  (e,, q,)} be a process. 
In the remainder of  the paper  the term process will represent an ordered pair 

(p, {e~ , . . . ,  en}) whose first member  is the process identifier and the second, the set 

of  all events that can be performed immediately by p including possibly o-. Therefore, 

we shall write (p, { e l , . . . ,  e,}) = { ( e l ,  q 0 , . . . ,  e,, q,)}. 

We can now define a new partial order, which we shall denote by <~_a. 

Definition 5.7. Let P = (p, Bi) and Q = (q, B2) be two processes written according 
to the preceding definition. Then P ~<~.j Q if and only if BI = B2 and p ~<~j q. 

Remark 5.8. Clearly this new relation (<~_j) is reflexive and transitive. Hence, <~_j 
is a partial order on the set of  processes. 

P: 

(2: 

a 

a 

Fig. 9. 
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Definition 5.9. Let P and Q be two processes. We say that P and Q are ((7-J)- 
equivalent (denoted P =~_j Q) if and only if P ~<~.j Q and Q ~<~_j P. 

Proposition 5.10. The equivalence relation =~_j is strictly finer than the equivalence 
relation =j. 

Proof. This follows easily from Proposition 5.4 and the definition of --~.j. [] 

Proposition 5.11. The example given in Example 2.5 (and Proposition 4.2.1) shows 
that there are processes trace equivalent (testing equivalent respectively) which are not 
( ~r-J)-equivalent. 

Furthermore, one can easily prove the following result copying the proof  used 

in Theorem 4.1.2 and Corollary 4.1.3. As a corollary of Proposition 5.10, we have 
the following result. 

Theorem 5.12. Let P~ and P2 be two processes, we have that P~ =,~_j P2 implies that 

t"1 -tP2. 

Before proving the following theorem which will ensure =~.j a place within the 
chain of equivalences described in Fig. 7, we need the following lemma. 

Lemma 5.13. Let Pl -- (P~, Bl) and 1°2 = (P2, B2) be two processes such that P1 =~-J P2. 

I f  (s, q~) ~ P1 then there is a pair (s, q2) ~ P2 such that q~ = ~.j q2. 

Proof. Suppose on the contrary that there is no such pair. Since (s, ql)~ PI and 
P1 =~-a P2 then B, = B2 and by definition of ~ _ j  there is a pair (s, q4) e P2 such that 
q4 <~ ~-J ql. But (s, q4) E 102 and Pt = ~-s P2 imply the existence of a pair (s, q3) ~ P1 
such that q3 <~-J q4. If q3 -- q~, we are done. Otherwise, we repeat this operation; 
since the processes that we consider are finitely branching, we shall eventually find 

two processes qk and qk+2j such that qk = qk+2~. [] 

Theorem 5.14. The equivalence relations =,~_j and ~bls are the same relation (cfi 
Fig. 10). 

=o-J ~ ~ " ~ "  ~bis 

~2 

te 

N 

Fig. 10. 
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Proof. Let P~ = (Pl, B1) and P2 = (P2, B2) be two processes. We must prove that 
P~ =~-a P2 if and only if P~ ~-bis P2. By copying with slight modifications the proof 

of Proposition 4.3.1 we get that P~ ~bis P2 implies that P~ =~.a P2. 

Now suppose that P~ =~-a P2. We must find a relation ~ such that (P1, P2) 6 

and ,~)tc_ E ( ~ ) .  We claim that ~ =  =~-a is such a relation. Take s 6 A u { e } .  First, 

let s = e. I f  p~ ~ q~, then there is a pair of the form (r, q~) in P~. Since P1 =,-J P2, 

B~ = B2. Therefore, there exists a pair (z, q2) in Pz such that ql =~.a q2 by Lemma 
5.13. Now let s 6 A. If P1 :~  q~, we may suppose without loss of generality that we 

have: P~ -~ q~, that is (s, q~) ~ P~. Since PI =~_a P2, there exists a pair (s, q2) in P2 

such that q~ =,~-a q2 by Lemma 5.13. This concludes the proof. [] 

6. Conclusion 

We have studied the equivalence defined in the Discrete Communicating Processes 

model. In order to insert it in the chain of existing equivalences, we have slightly 

modified the definition of the partial order inducing this equivalence and introduce 

explicit deadlocks. The introduction of "explicit deadlock" was a nice way of 

smoothing the behaviour of the equivalence relation =a. In doing so we obtained 

a new equivalence finer than the original one and which turns out to be the 

bisimulation defined by Park [21]. 
The modification introduced does not unduly lengthen the automatic verification 

of processes' equivalence. In fact, it could even help to halt the verification process 

quicker. 
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